Ultrasoft Fermion Mode at Finite Temperature and Density

D. Satow (Kyoto Univ. → RIKEN)

Collaborator: J. P. Blaizot (Saclay-CEA)

Introduction

Quark-Gluon Plasma (QGP)

Basic degree of freedom: quark, gluon

Introduction

Motivation: Clarifying quark spectrum in QGP phase.

In general, particle picture in medium is complicated.

•How many excitation modes?

(Emergence of collective excitation. cf: plasmon, phonon in condensed matter system)

•How are the dispersion relation, damping rate, strength?

(Since there is no Lorentz symmetry, the Lorentz-noncovariant dispersion relation is allowed.)

$$(\omega^2 - p^2 + m^2)$$

Energy hierarchy

This is nontrivial task;

Free-particle picture is generally **invalid** even at weak coupling (g << 1).

Yukawa model, QED/QCD

Because

•many-body effect becomes nonnegligible when (energy) ~ gT, $g\mu$

energy hierarchy at T, $\mu >> \Lambda_{QCD}$, mhard (inter-particle distance)-1 (Debye screening soft gΤ, gμ length)⁻¹, plasma oscillation frequency ultrasoft (mean free path)⁻¹

Energy hierarchy

This is nontrivial task;

Free-particle picture is generally **invalid** even at weak coupling (g << 1).

Yukawa model, QED/QCD

Because

- •many-body effect becomes nonnegligible when (energy) ~ gT, $g\mu$
- •Furthermore, interaction effect such as collision becomes non-negligible when (energy) ~ g^2T , $g^2\mu$

(mesoscopic scale)

Ultrasoft scale is **not well investigated** even at weak coupling (g << 1).

Hard scale $(p \sim T, \mu)$

Therefore the interaction effect is suppressed by g, and thus the free-particle picture is valid.

dispersion relation in the free limit : $\omega = |p|$

dispersion relation in fermionic sector

Hard Thermal Loop (HTL) approximation

• valid when $p \sim gT$, $g\mu$.

Fermion self-energy p-k f(n) = p

Boson self-energy

• 1-loop diagram

 $\Pi^{\mu\nu}(p) = \sum_{k=0}^{p} \sum_{k=0}^{k-p} \sum_{k=0}^{k-p} \sum_{k=0}^{k-p} \sum_{k=0}^{p} \sum_{k=0}^{$

Large medium effect

Collective modes appear.

dispersion relation in fermionic sector

Vlasov equation

 $n(X, \mathbf{k})$: distribution function of fermion $v = (1, \mathbf{k}/|\mathbf{k}|)$: 4-velocity, E(X), B(X): field strength

Vlasov equation

The collision term in Boltzmann eq. is neglected.

Vlasov Eq.:
$$(v \cdot \partial_X + g(E(X) + v \times B(X)) \cdot \partial_k) n(X, k) = C[n]$$

$$\partial_X = O(gT) >> C[n] = O(g^2T)$$

Self-energies calculated from Vlasov eq. coincides with that from HTL approximation.

J. P. Blaizot and E. lancu, PRL 70, 3376 (1993)

By contrast, the collision term is non-negligible at <u>ultrasoft</u> region $(\partial_X = O(g^2T, g^2\mu))!$

Ultrasoft scale ($p \sim g^2 T$, $g^2 \mu$)

Reflecting this fact, the HTL approximation is not applicable in ultrasoft region($p \le g^2 T$, $g^2 \mu$).

 $p\rightarrow 0$ limit can not be taken (pinch singularity)

$$g^{2} \int \frac{d^{4}k}{(2\pi)^{4}} 2\pi \theta(k^{0}) \delta(k^{2}) (N(k^{0}) + n(k^{0})) \frac{k}{2p \cdot k - p^{2}} \xrightarrow{p \to 0} \infty$$

Pinch singularity in the computation of the transport coefficient: S. Jeon, PRD **52**, 3591 (1995)

reorganizing perturbative expansion is necessary.

Ultrasoft Fermion Mode at μ =0

Resummed perturbation showed the existence of a novel excitation in ultrasoft ($p << g^2T$) region.

dispersion relation in fermionic sector

Y. Hidaka, <u>D. S.</u>, and T. Kunihiro, NPA **876**, 93 (2012)<u>D. S.</u>, arXiv: 1303.2684 [hep-ph]

Suggestions:

Resummed perturbation: V. V. Lebedev and A. V. Smilga, Annals Phys. **202**, 229 (1990).

Schwinger-Dyson eq.: M. Harada and Y. Nemoto, PRD **78**, 014004 (2008), S. X. Qin, L. Chang, Y. X. Liu, and C. D. Roberts, PRD **84**, 014017 (2011). NJL model: M. Kitazawa, T. Kunihiro and Y. Nemoto, PLB **633**, 269 (2006).

Excitations at μ =0

Ultrasoft Fermion Mode at Finite μ

How about in other region?

Resummed Perturbation (T=0, finite- μ)

resum the masses due to density effect $(m_f, m_b = O(g\mu))$ and

the damping rates
$$(\zeta_f, \zeta_b = O(g^4 \mu))$$

(Yukawa model, for simplicity.)

$$m_b, \zeta_b$$

$$p-k$$
 p
 k

$$g^{2} \xrightarrow{k} g^{2} \xrightarrow{p \to 0} O(g^{0})$$

$$\delta m^{2} = m^{2}_{b} - m^{2}_{f}, \zeta = \zeta_{f} + \zeta_{b}$$

Result

Dispersion relation $Re\omega = -\frac{p}{3} + \frac{g^2\mu}{4\pi^2}$

This term breaks the expansion condition $(p << g^2 \mu)$, so the result is not reliable. **The mode does not exist** in the corresponding region to the high-T case.

Argument based on dynamics

To satisfy the pole condition ($p - \Sigma(p) = 0$), $\Sigma(p)$ should be small when p = 0.

Argument based on dynamics

The contribution of anti-fermion cancels that of hole in μ =0 case.

(Charge Symmetry)

At finite μ , there are no anti-fermion in the heat bath, and $\Sigma(p)$ becomes large.

The pole does not exist.

Argument based on symmetry

Chiral, Charge symmetry

H. A. Weldon, PRD 61, 036003 (2000)

$$S^{R}(p^{0}, \mathbf{0}) = -\frac{\gamma^{0}}{p^{0} - \Sigma(p^{0}, \mathbf{0})}$$

($Re\Sigma$ is odd.)

Re Σ is odd, so p^0 -Re Σ is zero at p^0 =0.

 $(Im\Sigma$ is small enough.)

Argument based on symmetry

finite μ Charge symmetry

finite fermion mass

Chiral symmetry

M. Kitazawa, T. Kunihiro, K. Mitsutani and Y. Nemoto, PRD 77, 045034 (2008).

Persistency of ultrasoft mode

Ultrasoft mode does not exist at finite- μ , T=0.

naive guess

Resummed Perturbation $(T >> \mu)$

Since $T >> \mu$, the scheme is the same as that in the case of finite-T, $\mu=0$.

V. V. Lebedev and A. V. Smilga, Annals Phys. 202, 229 (1990)

Resum thermal masses $(m_f, m_b = O(gT))$ and decay widths $(\zeta_f, \zeta_b = O(g^4T))$.

$$m_b, \zeta_b$$

Result

The mode exists as long as $T >> \mu$.

Result

This term does not break the expansion condition ($p << g^2T$) when $T >> \mu$.

Dispersion relation	$Re\omega = -\frac{p}{3} + \frac{g^2\mu}{36\pi^2}$
Decay width	$\text{Im}\omega = \zeta = O(g^4T)$
Residue	$rac{g^2}{72\pi^2}$

Summary

- We showed that <u>ultrasoft fermion mode does not exist</u> <u>when μ is large.</u>
- We showed that the mode exists as long as $T >> \mu$.
- We obtained the expressions of the <u>dispersion relation</u>, <u>decay width</u>, <u>and the residue</u> for $T >> \mu$.
- We discussed the origin of the mode from the point of view of the <u>chiral symmetry</u> and <u>charge symmetry</u>.

Back Up

Resummed Perturbation (finite-T, μ =0)

(1) Resum the thermal masses $(m_f, m_b = O(gT))$ and

decay widths
$$(\zeta_f, \zeta_b = O(g^2T) \text{ or } O(g^4T))$$
.

QED (electron), QCD

Yukawa model, QED (photon)

$$m_b, \zeta_b$$

→ Pinch singularity is regularized.

$$g^{2} \xrightarrow{k} g^{2} \xrightarrow{p \to 0} O(g^{0})$$

$$\delta m^{2} = m^{2}{}_{b} - m^{2}{}_{f}, \zeta = \zeta_{f} + \zeta_{b}$$

Resummed Perturbation (finite-T, μ =0)

(In the case of QED/QCD)

The singularity is regularized, but **all the ladder diagrams contribute** at the same order.

(#vertex)/(#red line)=1

(2) Sum up the Ladder diagrams.

Adopt the following vertex:

Resummed Perturbation (finite-T, μ =0)

$$\Sigma(p) = \underbrace{\longrightarrow} + \underbrace{\longrightarrow} + \underbrace{\longrightarrow} + \dots$$

$$+ \underbrace{\longrightarrow} + \dots$$

This diagram contains all the contribution at leading order $(O(p/g^2))$.

Interpretation of Plasmino

level repulsion between antifermion and hole with boson

level repulsion between hole and hole with boson

No mixing between hole and antifermion!!

Hard scale $(p \sim T, \mu)$

In **hard** scale, the medium effect is small since the scale is the same as the inter-particle distance.

Soft scale $(p \sim gT, g\mu)$

In the **soft** scale, we consider the large distance compared with the inter-particle distance, so the medium effect is not negligible.

